A chart generator for the Dutch Alpino grammar

Daniël de Kok and Gertjan van Noord

June 10, 2009

Introduction

- ▶ Parsing: determining the grammatical structure of a sentence.
- Semantics: a parser can build a representation of meaning (semantics) as a side-effect of parsing a sentence.
- Generation: building natural language realizations representing given semantics.

Applications

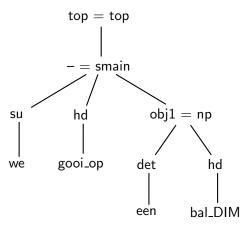
- ► Checking a grammar: if a grammar is too permissive, using it with a generator will create ungrammatical sentences.
- Sentence fusion: combining the semantics of two (or more) sentences.
- ▶ Sentence compression: removing non-salient elements of a sentence.
- ► Machine translation: generating a sentence in a different language (interlingua or transfer-based MT).

Topics

- Description of the input formalism
- ► The Alpino chart generator
- ► Fluency ranking

Alpino chart generator

- ▶ Alpino is a wide-coverage parser for Dutch, with a lexicalized grammar in the tradition of HPSG.
- ▶ In the context of the STEVIN DAISY project, natural language generation components are being developed, such as a chart generator and models for fluency ranking.


Dependency trees

- ► The Alpino generator accepts dependency trees (DTs) that describe the grammatical dependency relations between lexical nodes, and the constituent categories dominating over lexical nodes.
- No information about the word order.
- Lexical nodes specify:
 - ► The sense (the word root, plus possibly some additional information to select a specific reading).
 - An Alpino part of speech tag.
 - ► Attributes that are used to specify additional requirements, such as the tense of a verb or the number of a noun.

Dependency trees (2)

wij gooiden een balletje op (literal: we threw a (small) ball upwards)

Lexical nodes

Sense	POS	Attributes
we	pron	
gooi_op	verb	tense='past'
een	det	
bal_DIM	noun	

Generates:

we gooiden een balletje op we gooiden 'n balletje op een balletje gooiden we op 'n balletje gooiden we op

Usefulness of dependency trees

Are dependency trees good enough for applications where generation is useful?

- ▶ Sentence fusion: Marsi and Krahmer (2005)
- Sentence compression: McDonald (2006), De Kok (2008, Ma Thesis)
- ▶ Machine translation: Dekang Lin (2006), Alshawi et al. (2000)

Generating from Alpino test suites

- ▶ We have produced DTs for most sentences in the Alpino test suite.
- Realizations can be generated for most DTs:

Suite	Sentences	>=1 realization(s)
g_suite	996	995
h_suite	991	970
i_suite	179	177
cdb	3872	3216
nlwikipedia-selection	7764	7657

Most of the remaining problems are related to productive lexicon rules that cannot be used in inverse direction.

The need for fluency ranking

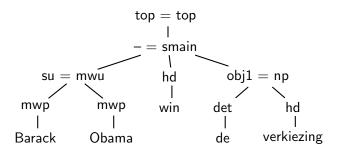
- ▶ A grammar will often allow for more than one surface sentence (realization) to be generated.
- But not every realization is equally fluent.
- One example generated with the Alpino chart generator:
 - omdat zijn rol toen echt wel uit was gespeeld omdat echt wel toen z'n rol was uit gespeeld omdat wel zijner rol echt waart uit gespeeld toen
- ► For a set of 7657 sentences from Wikipedia from 5 to 15 words, the average number of realizations, allowing minimal punctuation was 83.8
- ▶ So, we need good models to pick the most fluent realization from all realizations.

Fluency models

The Alpino generator implements two fluency models:

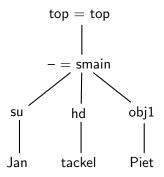
- ► An N-gram language model
- A maximum entropy model

N-gram language model


- ▶ Intuition: the realization that is the most likely to occur in a language, is the most fluent realization.
- ▶ We can estimate the sentence probability with an n-gram model:

model:
$$p_n(w_n^k) = \prod_{i=1}^k p(w_i|w_{i-n+1}^{i-1})$$

Disadvantages of n-gram models


- ▶ Cannot capture dependencies that go beyond n-1 span of history.
- Will often even fail to capture dependencies within its span due to data sparseness.
- Cannot directly capture structural characteristics.
- ▶ Of course, n-gram models still perform surprisingly well on many tasks.

su-obj1 order

de verkiezingen won Barack Obama (the elections won Barack Obama) Barack Obama won de verkiezingen (Barack Obama won the elections)

su-obj1 volgorde

Piet tackelt Jan (Piet tackles Jan) Jan tackelt Piet (Jan tackles Piet)

Maximum entropy models

- ► Train weights for features capturing various aspects of a realization, including structural information.
- Score realizations by multiplying (trained) feature weights and feature values.
- ▶ Integration with the parse disambiguation model of Alpino.

Features templates (Velldal and Oepen 2006)

Velldal and Oepen proposed four feature templates for fluency ranking:

- ▶ ngram_lm: the n-gram language model score.
- ▶ *lds*: local derivation sub-trees, with optional grandparenting.
- Idsb: this template provides a back-off for Ids, by reduction to one daughter.
- tngramw: n-grams of syntactic categories and the rightmost word.
- tngram: n-grams of syntactic categories (without a surface form).

Feature templates (Velldal 2007)

In addition, in his thesis Velldal proposes some feature templates that measure skewedness in the number of lexical nodes a constituent dominates over:

- Ids_dl: local derivation subtrees, with binned frequencies of the number of lexical items each daughter dominates over.
- Ids_skew: local derivation subtrees, with binned standard deviations of the number of lexical items each daughter dominates over.

Feature templates

- ▶ *lds_deps*: derivation tree node with a list of relations in its dt feature structure, ordered by the positions of their heads.
- ▶ Syntactic features from the Alpino parse disambiguation component:
 - Frame, stem/frame.
 - ▶ Ids of rules used in the derivation.
 - ► Topicalized/non-topicalized subject.
 - Long-distance dependencies.
 - Orderings in the middle-field.

Training/evaluation material

- ► The n-gram model was trained on 6.4 million sentences from the Twente News Corpus (89.7 million tokens).
- ➤ Testing and evaluation was performed on uncorrected DTs for 7763 sentences from the Dutch Wikipedia (August 2008) consisting of 5-15 words.

Training procedure

- Generate sentences from DTs in the training corpus, and extract features using feature templates. Realizations are scored by calculating the ROUGE-N score compared to the original sentence in the training corpus.
- ► For each DT 100 realizations are randomly selected for training.
- Features are filtered for relevance: a feature is relevant if it takes a different value for any two competing realizations for the same DT.
- ► Feature weights are estimated (using TADM).

Evaluation method

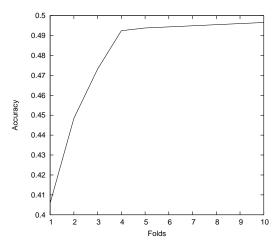
- ▶ Evaluation was performed using ten-fold cross-validation.
- ► The sentence as it was seen in the corpus is considered the most fluent (gold standard) realization.
- ➤ To compare realizations against the gold standard, the ROUGE-SU measure was used.
- Since we want to measure the performance of the fluency component, best match accuracy was used as the evaluation measure.

Results

Model	Accuracy	ROUGE-SU
Random selection	0.012	0.544
N-gram	0.390	0.674
Velldal	0.510	0.713
Velldal + lds deps	0.520	0.716
Velldal + Ids deps + disambiguation	0.515	0.716

The catch...

Gold standard: de partij is zowel organiek als inhoudelijk niet verbonden met de beweging (the party is both organically as in content not associated with the movement)


Fluency model: de partij is zowel inhoudelijk als organiek niet verbonden met de beweging

Gold standard: ook concludeerde hij dat geluid een beweging van de stoffelijke lucht was (he also concluded that sound is a movement in material air)

Fluency model: hij concludeerde ook dat geluid een beweging van de stoffelijke lucht was

MaxEnt learning curve

su-obj1 order revisited

n-gram language model:

Piet tackelt Jan | -46.873 Jan tackelt Piet | -46.873

maxent model:

Jan tackelt Piet | -78.885 Piet tackelt Jan | -78.626

Conclusions

- ► The Alpino chart generator can now generate from a substantial part of the Alpino test suites.
- Using a maximum entropy model for fluency ranking provided a substantial improvement over the n-gram language model.
- So far, adding parse disambiguation features or features modelling (dis)preferred dependency order did not provide a substantial improvement over the features proposed by Velldal.
- ➤ Software is available from: http://www.let.rug.nl/vannoord/alp/Alpino/

